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Dynamical temperatures of quartic and Henon-Heiles oscillators

Vishnu M. Bannur
Institute for Plasma Research, Bhat, Gandhinagar 382 428, India

~Received 2 December 1997!

We have numerically verified the recently proposed formulation of dynamical temperature,TS
dy[ time

average of“•(“H/u“Hu2), by H. H. Rugh@Phys. Rev. Lett.78, 772 ~1997!#, using the quartic and the
Henon-Heiles oscillators. We also give a simple, alternative derivation of the dynamical temperature. Our
numerical results agree with theory reasonably well. However, contrary to Rugh’s claim, we find that it is not
computationally efficient compared to the more generally used form of the dynamical temperature,TB

dy[ time
average of momentum square of each particle, especially for a system with large degrees of freedom (N). For
sufficiently largeN, both temperatures approach the same value andTB

dy is easier to evaluate.
@S1063-651X~98!04607-8#

PACS number~s!: 05.45.1b, 05.20.Gg, 05.70.2a
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Statistical mechanics~SM! is generally used to study th
macroscopic properties of a system with many degree
freedom. A large number of degrees of freedom gives ris
ergodic motion of the system in phase space due to freq
collisions among particles. These collisions are assumed
plicitly and are essential for the success of SM@1#.

Recently it was found that concepts from SM and therm
dynamics may be used to study systems with few degree
freedom, exhibiting chaotic behavior, like quartic oscillato
~QO! and Henon-Heiles oscillators~HHO! @2,3#. Or, con-
versely, we can gain a physical insight into the dynami
description of SM using such systems@4#. In these systems
there are no implicitly assumed collisions and the ergodic
is due to the nonlinearity of the system, which is explicit
the Hamiltonian. The dynamical description of SM and th
modynamics using such models may answer fundame
problems such as the Fourier heat law, thermalization of
cillator chains, etc., from first principles@5–7#.

In this paper, we study the temperature of a Hamilton
dynamical system in the microcanonical ensemble of th
modynamics. In the literature there are two definitions
temperatures derivable from phase space volume,G. As dis-
cussed by Berdichevsky and Alberti@2# and Bannuret al.
@3#, one definition of temperature isTB5(] ln G/]E)21, gen-
erally used in the study of systems with few degrees of fr
dom @5–7#. Another definition isTS5@] ln(]G/]E)/]E#21,
generally used in SM. Both of the above temperatures
proach the same value in the limit of large degrees of fr
dom @2,3#. However, for few degrees of freedom they d
differ. For many calculations, in the literature, the more co
monly used definition of temperature is the time average
momentum square associated with any one degree of
dom. This is what is called the dynamical temperatureTB

dy ,
which is equal toTB , defined above, by the ergodic theore
@2,1#. For a chaotic system, left for sufficiently long time,TB

dy

associated with each degree of freedom approachesTB . So
far, the other definition of temperature, namely,TS , has not
been used in any calculations of dynamical systems w
finite degrees of freedom. This is probably because the
namical temperature (TS

dy) corresponding toTS was not
known and also in SM there is no difference betweenTB and
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TS . Recently Rugh@8# obtained an expression forTS
dy that is

equal to the time average of a function,F(t)
[“•(“H/u“Hu2), whereH is the Hamiltonian,“ is the
gradient operator in phase space. He verified it usingN un-
coupled harmonic oscillators~HO!. However, this HO sys-
tem is not chaotic while the theory is for a chaotic system.
it is more appropriate to verify the theory using chaotic s
tems such as QO or HHO. This is exactly what we presen
this paper along with a simple alternative derivation of
which follows from SM@1#. Earlier, in Ref.@3#, we derived
analytic expressions forTB andTS for N degrees of freedom
QO. Here we also derive approximate analytic expressi
for TB andTS for a HHO system. Note that in Ref.@2#, TB
and TS are integrals that need to be evaluated numerica
Our numerical results show thatTS

dy approachesTS andTB
dy

of each particle converges toTB , when the system is chaotic
for both QO and HHO systems. When the system is nonc
otic, both TS

dy and TB
dy approach constant values, but n

equal toTS andTB , respectively. In the case of HHO, equ
partition of energy still takes place and the correspond
temperature is close toTB and has an origin different from
ergodicity.

We consider QO and HHO as two examples to study
dynamical temperatures of a system with finiteN degrees of
freedom. We consider here the case ofN52 and the Hamil-
tonians are

H5
~p1

21p2
2!

2
1

q1
4

2
1

q2
4

2
1

a

2
q1

2q2
2 ~1!

and

H5
~p1

21p2
2!

2
1

q1
2

2
1

q2
2

2
1q1

2q22
1

3
q1

3 ~2!

for QO and HHO, respectively. Hereq’s andp’s are gener-
alized coordinates and momenta, respectively, anda is a
parameter. QO is chaotic fora.6. HHO is chaotic for en-
ergy E51/6 and develops nonchaotic islands as energy
decreased. Earlier analysis by Berdichevskyet al.shows that
407 © 1998 The American Physical Society
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even forE,1/6, equipartition of energy takes place. Wh
the system is chaotic or ergodic then we have

K p1

]H

]p1
L 5 K p2

]H

]p2
L 5 K q1

]H

]q1
L

5 K q2

]H

]q2
L 5S ] ln G

]E D 21

5TB , ~3!

where the angular brackets indicate the time average, w
is equal to the phase space average. For QO@3#, we have

G~E!5E
H<E

dp1dp2dq1dq25CE3/2, ~4!

and henceTB52E/3 andTS52E.
For HHO it is not possible to get an exact analytic expr

sion for G(E), as in the case of QO. However, using t
same procedure, one can get a useful expansion forG(E) in
powers ofE whereE is always<1/6. That is,

G~E!5pE2S 11
E

2
1

35

32
E21••• D , ~5!

and hence

TB5
E

2S 12
E

4
2

29

32
E21••• D ~6!

and

TS5ES 12
3

4
E2

13

4
E21••• D . ~7!

The expressions obtained forTB and TS above are from
SM, phase space average ofXi ]H(Xi)/]Xi and F(t), re-
spectively, whereXi is eitherqi or pi . Next let us discuss the
corresponding dynamical quantities.TB

dy has a simple form
TB

dy5^p1
2&5^p2

2&, which immediately follows from Eq.~3!
and TS

dy51/̂ F(t)&, where F(t) has very complicated ex
pression. More detailed derivation ofTS

dy is given by Rugh
@8# and here we give a simple alternative derivation, wh
follows from SM. Following Khinchin@1#, we have

FIG. 1. Dynamical temperatures corresponding toTB1, TB2, and
TS as a function of timet for QO with E51.5 anda5500.
ch

-

h

1

TS
5

] ln V

]E
, ~8!

where V(E)[*E(dS/u“Hu)5]G/]E. G(E) is the phase
space volume bounded by energyE. Hence,

1

TS
5

1

V

]

]EEE

dS

u“Hu
5

1

V

]

]EEE
dS•

“H

u“Hu2
, ~9!

wheredS is the surface element. Note that the surface h
is a constant energy surface and hence a unit vector no
to the surface is“H/u“Hu. Next, using divergence theorem
we get

1

TS
5

1

V

]

]EEH<E
dG“•~“H/u“Hu2!5

1

VE
E
dVF5^F&.

~10!

From ergodic theory we know that the phase space ave
equal to the time average and henceTS5TS

dy when the sys-
tem is chaotic.

Numerical results on the evaluation of dynamical te
peraturesTS

dy andTB
dy for quartic oscillator and Henon-Heile

oscillator systems are presented in Figs. 1–3 with dynam
temperatures along they axis and time along thex axis in
log scale. Note that in Fig. 1, temperature is also plotted

FIG. 2. Dynamical temperatures corresponding toTB1, TB2, and
TS as a function of timet for HHO with E51/8 and initial points on
the chaotic region.

FIG. 3. Dynamical temperatures corresponding toTB1, TB2, and
TS as a function of timet for HHO with E51/8 and initial points on
the nonchaotic region.
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PRE 58 409DYNAMICAL TEMPERATURES OF QUARTIC AND . . .
log scale. These are time averaged quantities and plotte
functions of time. The time average of an observableO(t) is
defined as

^O&~ t !5
1

t E0

t

O~t!dt. ~11!

The values ofTB and TS are marked on they axis at the
right.

Figure 1 is for a QO system with parametersE51.5, a
5500.0, and henceTB51.0 andTS53.0 from Eq.~4!. As
we discussed in Ref.@3#, for a5500 the system is chaoti
and for smallera phase space contains a lot of nonchao
islands. We can see thatTS

dy approachesTS andTB
dy of each

particle approaches toTB . Initially, both the temperature
show large fluctuations and then settle around the expe
values. TB

dy approaches close toTB at t'5000, which is
faster than that ofTS , which is att'53104 as we see from
the figure. Att553105, the percentage difference betwe
TS and TS

dy is '1.5% and that ofTB1 and TB2 are both
'0.2%. This gives an idea of the convergence of dynam
temperatures to their corresponding SM temperatures.
a50 or 2 the system is integrable andTB

dyÞTB and TS
dy

ÞTS .
For HHO, we have takenE51/8 and henceTB

'0.059 66 andTS'0.106 93 from Eqs.~6! and~7!. The ex-
act values areTB50.059 657 andTS50.105 78, which are
obtained by numerical evaluation of the integral equati
Eqs. ~3.5! in Ref. @2#. Results are plotted in Figs. 2 and
Figure 2 is for the initial points on the chaotic region and
see the convergence of dynamical temperatures to the c
sponding SM temperatures. Att553105, the percentage
difference betweenTS and TS

dy is '0.01% and that of
TB1 , TB2 is '2.1% and'0.3%, respectively. Figure 3 is fo
the initial points on the nonchaotic islands andTB

dy of each
particle converges to a value close toTB but not exactlyTB ,
whereasTS

dy approaches a value clearly not equal toTS .
Equipartition of energy,TB1

dy 5TB2
dy , in this case, may be du

to the resonance coupling between two oscillators as poi
out by Berdichevsky and Alberti@2#. Note that in all above
cases dynamical temperatures oscillate around correspon
SM temperatures with decreasing amplitude with time.
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The reason for not considering the case withE51/6 for
HHO is thatF(t) has a singularity and numerical results a
not trustable. ForE,1/6, F(t) has very sharp peaks, but b
taking enough points in the integration one can get res
correct to required accuracy. As the system evolves, wh
ever u“Hu50 or minimum, singularity or peaks occur.

In summary, we have studied the dynamical temperatu
of QO and HHO and compared with temperatures, deriva
from statistical mechanics using the ergodic theorem. T
dynamical temperatures obtainable by time averaging m
mentum squares of the particles was discussed earlie
Berdichevsky and Alberti@2# for HHO and Bannuret al. @3#
for QO. Here, we have rederived and verified the recen
proposed dynamical temperature,TS

dy , by Rugh @8#, which
corresponds to the usual temperature used in SM,TS and
have compared it with the earlier results onTB

dy . We have
also derived approximate analytic expression forTB andTS

for HHO which reproduce the approximate straight line p
betweenTB andE, shown in Fig. 9 of Ref.@2#, which was
obtained by numerical integration.

In conclusion, we found thatTS
dy is a reasonable definition

of dynamical temperature, derivable from statistical mech
ics based on the ergodic theorem. In both of our models,
and HHO, which have different properties and symmetri
TS

dy asymptotically approachesTS , as expected, when th
system is almost chaotic, whereasTB

dy , from our study of
HHO, asymptotically approachesTB even for systems tha
are nonchaotic. Hence,TB may not be an appropriate tem
perature. However, for systems with large degrees of fr
dom one may useTB

dy as a temperature because, for largeN,
TB'TS and the expressionF(t), for example, QO withN
degrees of freedom, is very complicated to handle. In fa
the evaluation ofTS

dy is not as efficient asTB
dy for large N.

This justifies our usual notion of temperature asTB
dy , which

is 'TS
dy for a statistical system (N→`). Our present study

also reconfirms our earlier thermodynamic and SM treatm
of chaotic systems even with only two degrees of freedo
As a future work, it would be interesting to reanalyze t
earlier work on the Fourier heat law, thermalization of osc
lator chains, etc.,@5–7# using this definition of temperature
TS

dy , whereN is finite.
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